

#### Advantage

- sub-100 nm Resolution
  - energy threshold in polymerization (inhibitor: oxygene, amine)







#### Advantage

- sub-100 nm Resolution
  - energy threshold in polymerization (inhibitor: oxygene, amine)
  - non linear effect due to multiphoton absorption





afao

HAUTE-ALSACE



excitation by one photon absorption





#### Advantage

- sub-100 nm Resolution
  - energy threshold in polymerization (inhibitor: oxygene, amine)
  - non linear effect due to multiphoton absorption















ARNOT

RS2E

# **Two Photon Stereolithography (TPS)**

#### Advantage

- sub-100 nm Resolution
  - energy threshold in polymerization (inhibitor: oxygene, amine)
  - non linear effect due to multiphoton absorption





afaq

HAUTE-ALSACE



10 fs



### Advantage

afao ISO 9001 Qualité

HAUTE-ALSACE

- sub-100 nm Resolution
  - energy threshold in polymerization (inhibitor: oxygene, amine)
  - non linear effect due to multiphoton absorption



confinement of the polymerization to the focal point / voxel (resolution  $\lambda/10$ )

Institut de Science des Matériaux de Mulhouse

#### **Commercial set-ups**









→ Resolution due to optical and chemical confinement of the photoreaction *Key role of chemistry* → *Nanophotochemistry* (*inhibition of radical polymerization by oxygene, diffusion controlled reaction*)

polymer

Institut de Science



### **TPS Resolution**











**State of the art:** 

S. Kawata, **Nature 2001**, *412*, 697-698. Rés: abs. biphoton. Rx,y = 120 nm  $\lambda$  = 780 nm,  $\lambda$  / 6.5





Perry, Marder, **Opt. Exp. 2007**, *15*, 3426-3436. Rés: abs. biphoton. Rx,y = 65 nm  $\lambda = 520 \text{ nm}, \lambda / 8$ 

→Lower resolution due to optical (irradiation wavelength) and chemical strategies Key role of chemistry → Molecular engineering (design & photophysical characterization of photoinitiator)





## **Two-photon Polymerization**

des Matériaux de Mulhouse

### State of the art:

а





S. Kawata, **Nature 2001**, *412*, 697-698. Rés: abs. biphoton. Rx,y = 120 nm  $\lambda$  = 780 nm,  $\lambda$  / 6.5





Perry, Marder, **Opt. Exp. 2007**, *15*, 3426-3436. Rés: abs. biphoton. Rx,y = 65 nm  $\lambda = 520 \text{ nm}, \lambda / 8$ 



S. Kawata, Appl. Phys. Lett. 2007, 90, Rés: abs. biphoton. Rx,y = 80 nm  $\lambda$  = 800 nm,  $\lambda$  / 10

→Resolution due to optical and chemical confinement of the photoreaction Key role of chemistry → Nanophotochemistry (inhibition of radical polymerization by additive, diffusion controlled reaction)





### **Two-photon Polymerization**





**State of the art:** 

Resolution

S. Kawata, Nature 2001, 412, 697-698. Rés: abs. biphoton. Rx, y = 120 nm $\lambda = 780 \text{ nm}, \lambda / 6.5$ 

Excitation

xy plane

xz plane

Deactivation

а





Perry, Marder, Opt. Exp. 2007, 15, 3426-3436. Rés: abs. biphoton. Rx, y = 65 nm $\lambda = 520 \text{ nm}, \lambda / 8$ 

um



S. Kawata, Appl. Phys. Lett. 2007, 90, Rés: abs. biphoton. Rx, y = 80 nm $\lambda = 800 \text{ nm}, \lambda / 10$ 

< 10 nm ?



J.T. Fourkas, Science 2009, 324, 910-913. Rés: abs. biphoton. Rx, y = 40 nm $Rz = 40 \text{ nm} \rightarrow \lambda = 800 \text{ nm}, \lambda / 20$ 



# **Two-photon Polymerization**

• Resolution sub-100 nm

**3D** Microfabrication by two-photon absorption = two-photon stereolithography (TPS)

- non linear effect due to multiphoton absorption
- energy threshold in polymerization (inhibitor: oxygene, amine)

confinement of the polymerization to the focal point / voxel (resolution  $\lambda/10$ )



