

Multi-material Additive Manufacturing of Polymer Robotic Structures for Interventional Radiology

Prof. Pierre Renaud AVR – ICube INSA Strasbourg, CNRS, University of Strasbourg

3D Printing, Robotics & Medicine, October 16, 2018

Medical Context

Image-guided Surgery

Image for Guidance

- Imaging devices are more and more used for guidance during interventions in surgery and radiology
- Image-guided surgery can offer a better pathology management

Interventional Radiology

- Interventional radiology: use of imaging devices such as CT or MRI scanners for surgical tool guidance
- Percutaneous procedures: use of needles for biopsy or local treatment

Several Issues

- With CT or CBCT scanner, X-Ray exposition is a major issue for the radiologist
- MRI scanners offer long and narrow bores, with reduced access to the patient
- Needle insertion accuracy is difficult to maintain: 3D control from 2D images is challenging with lack of dexterity & ergonomy

Several Issues

- Very long learning curve
- Radiologist experience critical for the task success
- Training cost is significant
- **Robotic assistance** can be helpful

Perfint, Robio EX System

- Needle positioning device for CT-guided procedures
- Limitations:
 - Bulky system
 - Manual needle insertion which means X-Ray exposition if per op imaging is being used
 - No compensation of patient and organ movements

- Remote manipulation for needle path guidance
- Limitations:
 - Manual insertion
 - Not MRI compatible
 - Table mounted: no compensation of patient and organ motions

iSYS, iSYS I

Innomedic, Innomotion

- MRI compatible system for needle positioning
- Limitations:
 - Table mounted system, no compensation of patient and organ motions
 - Cumbersome system

- Need for robotic solutions:
 - To control needle kinematics in the challenging environment of MR, CT, CBCT imaging devices
 - To actuate motions, with sufficient safety and without degradation of image quality
 - Compact enough for patientmounted approaches

Motivations for MMAM

3D Printing to Improve Solutions

Requirements

Compatibility (MRI)

Compactness and light weight

Advantages of 3D Printing Use of polymer materials Reduction of the number of assemblies

[Stormram 3, U.Twente]

[LPR, U. Grenoble-Alpes]

[Robopsy, MIT]

Interest of MMAM

- Freedom of shape at no cost
- Freedom in the choice of materials within a part
- Flexible parts to obtain movements

Performances of Interest

Geometrical accuracy

- Minimum feature size: I mm
- Accuracy: 0.1 mm
- Flatness < 0, I mm</p>
- Angular errors < 0, 1°</p>

Material behavior

- One elastic material (E = 1800 MPa)
- One soft material (E = I MPa), hyper-elastic and incompressible, >60% strain
- Resistance of material interfaces
- Gamma sterilization can be applied to both materials

MMAM for Robot Architectures

Revolute joint based on MMAM

Well-known design: notch-type compliant joint

Properties:

- High compactness
- Large range of motion

- Low rotational stiffness
- High accuracy

Revolute joint based on MMAM

Freedom in material selection: elastomer at the center of the joint

Large range of motion

Remark:

 High stiffness along negative Y because material incompressibility

- Low rotational stiffness
- High accuracy

Revolute joint based on MMAM Freedom of shape of MMAM:

- Helical sweep to place sections with different orientations in parallel
- Two helices with opposite pitches to get symmetrical behavior

Properties:

- High compactness
- Large range of motion

A standardized component

Numerical and experimental studies

- FEA to explore the performances of all possible geometries
- Experimental measurement of the stiffness matrix and the range of motion
- Setup of a design method to ensure the performances of the joints taking into account the process impact

Results: an « off the shelf » component

- With a design method to select the geometry
- With a design method to ensure that the actual performances match those requirements
- With adequate performances for single-use or limited number of uses in a device (hundreds of cycles)

Design Charts

Kinematic architectures

Needle manipulation with compact compliant architectures

 A spherical architecture with Remote Center of Motion as a single part (RCM accuracy: 0.4 mm, 80° cone workspace)

Kinematic architectures

Needle manipulation with compact compliant architectures

- A spherical architecture with Remote Center of Motion as a single part (RCM accuracy: 0.4 mm, 80° cone workspace)
- Serial or parallel architectures can be designed as compact systems

MMAM for Actuation

Main Requirements for a Needle Driver

- Insertion force: 2 N
- Velocity: Imm/s
- Lateral stiffness g.t. needle lateral stiffness
- Diameter and length l.t. 30 mm
- Compatible with X-ray and MRI

Inchworm Kinematics

Use of metamaterial

Conventional material Positive Poisson ratio → Axial contraction Metamaterial Negative Poisson ratio → Increased axial displacement

Auxetic material

Inverted honeycomb with no load

Displacement along X implies displacement along Z \rightarrow negative Poisson ratio

Design of the outer envelope using MMAM

- Elastic material used:
 - To get the auxetic behavior
 - To ensure driver stiffness
- Rubber-like material used for hermetic chamber

Implementation

Insertion Characteristics

- Step size around 0.5 mm
- No load velocity: 0.65 mm/s
- During insertion in biomechanical phantom: 0.4 mm/s

Integration and Medical Impact

Robotic Assistance

Targeted procedures

Biopsies on liver, lung, kidney

Approach

- To rely on dedicated assistance software now being integrated in medical imagers
- Not to use robot registration, but direct control by the radiologist

Method for determination of specifications & workflow

- Observation of procedures in France & Germany (> 35h in MRI, CT)
- Identification of required functionalities and associated workflow
- Validation with the radiologists

Assessment in CBCT

- Remote control of orientation and insertion
- Manual adjustment of insertion point
- Phantom to simulate skin and tissue stiffness with embedded targets

Assessment in CBCT

- 2 operators with no experience of robot
- I7 manual, I6 robot-assisted insertions
- Measurement of accuracy and X-ray exposition with dosimeters on operator hands

Evaluation

Conclusions & Perspectives

Conclusions

- Design based on MMAM can open possibilities for robot architectures, actuation and also sensing.
- Fluidic actuation of interest in combination with MMAM. Hydraulic solutions under investigation.
- Integration of active materials, and fabrication of microstructures of interest for news designs of sensors or actuators

Acknowledgement

L. Barbé, Q. Boehler, A. Bruyas, R.L. Cazzato, F. Geiskopf, T. Gayral, M. Nierenberger, A. Pfeil, P. Rao, L. Rubbert, B. Wach, L. Zorn

Thank you for your attention

